#### **LECTURE 1 OP-AMP**

Introduction of Operation Amplifier (Op-Amp)
Analysis of ideal Op-Amp applications
Comparison of ideal and non-ideal Op-Amp
Non-ideal Op-Amp consideration

## **OPERATIONAL AMPLIFIER (OP-AMP)**

Very high differential gain

High input impedance

Low output impedance

Provide voltage changes (amplitude and polarity)

Used in oscillator, filter and instrumentation

Accumulate a very high gain by multiple stages



$$V_o = G_d V_d$$

 $G_d$ : differential gain normally very large, say  $10^5$ 

## **IC PRODUCT**



**DIP-741** 

Dual op-amp 1458 device

#### **SINGLE-ENDED INPUT**



- + terminal : Source
- – terminal : Ground
- 0° phase change



- + terminal : Ground
- – terminal : Source
- 180° phase change

#### **DOUBLE-ENDED INPUT**



- Differential input
- $V_d = V_+ V_-$
- $0^{\circ}$  phase shift change between  $V_{\rm o}$  and  $V_{\rm d}$



Qu: What  $V_0$  should be if,



#### **DISTORTION**



The output voltage never excess the DC voltage supply of the Op-Amp

#### **COMMON-MODE OPERATION**

- Same voltage source is applied at both terminals
- Ideally, two input are equally amplified
- Output voltage is ideally zero due to differential voltage is zero
- Practically, a small output signal can still be measured



Note for differential circuits:

Opposite inputs : highly amplified Common inputs : slightly amplified

⇒ Common-Mode Rejection

## **COMMON-MODE REJECTION RATIO (CMRR)**

Differential voltage input:

$$V_d = V_+ - V_-$$

Common voltage input:

$$V_c = \frac{1}{2}(V_+ + V_-)$$

Output voltage:

$$V_o = G_d V_d + G_c V_c$$

 $G_{\rm d}$ : Differential gain

 $G_{\rm c}$ : Common mode gain



Common-mode rejection ratio:

$$CMRR = \frac{G_d}{G_c} = 20 \log_{10} \frac{G_d}{G_c} (dB)$$

Note:

When 
$$G_d >> G_c$$
 or CMRR  $\to \infty$   
 $\Rightarrow V_0 = G_d V_d$ 

#### **CMRR EXAMPLE**

What is the CMRR?

#### Solution:

$$V_{d1} = 100 - 20 = 80 \mathbf{V}$$

$$V_{c1} = \frac{100 + 20}{2} = 60 \mathbf{V}$$

$$V_{c2} = \frac{100 + 40}{2} = 70 \mathbf{V}$$

$$V_{c2} = \frac{100 + 40}{2} = 70 \mathbf{V}$$
(2)

From (1) 
$$V_o = 80G_d + 60G_c = 80600V$$

From (2) 
$$V_o = 60G_d + 70G_c = 60700V$$

$$G_d = 1000$$
 and  $G_c = 10$   $\Rightarrow$  CMRR =  $20\log(1000/10) = 40$ dB

NB: This method is Not work! Why?

#### **OP-AMP PROPERTIES**

## (1) Infinite Open Loop gain

- The gain without feedback
- Equal to differential gain
- Zero common-mode gain
- Pratically,  $G_d = 20,000$  to 200,000

## (2) Infinite Input impedance

- Input current  $i_i \sim 0$ A
- $T-\Omega$  in high-grade op-amp
- m-A input current in low-grade op-amp

## (3) Zero Output Impedance

- act as perfect internal voltage source
- No internal resistance
- Output impedance in series with load
- Reducing output voltage to the load
- Practically,  $R_{\rm out} \sim 20-100 \,\Omega$





## FREQUENCY-GAIN RELATION

- Ideally, signals are amplified from DC to the highest AC frequency
- Practically, bandwidth is limited
- 741 family op-amp have an limit bandwidth of few KHz.
- Unity Gain frequency  $f_1$ : the gain at unity
- Cutoff frequency  $f_c$ : the gain drop by 3dB from dc gain  $G_d$



GB Product :  $f_1 = G_d f_c$ 

#### **GB PRODUCT**

Example: Determine the cutoff frequency of an op-amp having a unit gain frequency  $f_1 = 10$  MHz and voltage differential gain  $G_d = 20$ V/mV

#### Sol:

Since 
$$f_1 = 10 \text{ MHz}$$

By using GB production equation

$$f_1 = G_{\rm d} f_{\rm c}$$

$$f_{\rm c} = f_1 / G_{\rm d} = 10 \text{ MHz} / 20 \text{ V/mV}$$

$$= 10 \times 10^6 / 20 \times 10^3$$

$$= 500 \text{ Hz}$$



## **IDEAL VS PRACTICAL OP-AMP**

|                                   | Ideal                                          | Practical                                                | Ideal op-amp                                      |
|-----------------------------------|------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
| Open Loop gain A                  | $\propto$                                      | 105                                                      | $V_{ m in}$ $V_{ m out}$                          |
| Bandwidth BW                      | œ                                              | 10-100Hz                                                 | $Z_{\text{out}}=0$                                |
| Input Impedance $Z_{in}$          | $\propto$                                      | >1 <b>M</b> Ω                                            |                                                   |
| Output Impedance $Z_{\text{out}}$ | 0 Ω                                            | 10-100 Ω                                                 | Practical op-amp                                  |
| Output Voltage $V_{\rm out}$      | Depends only on $V_d = (V_+ - V)$ Differential | Depends slightly<br>on average input $V_c = (V_+ + V)/2$ | $V_{ m in}$ $Z_{ m in}$ $Z_{ m out}$ $V_{ m out}$ |
|                                   | mode signal                                    | Common-Mode signal                                       | $AV_{\text{in}}$                                  |
| CMRR                              | $\infty$                                       | 10-100dB                                                 | =                                                 |

#### **IDEAL OP-AMP APPLICATIONS**

# Analysis Method:

## **Two ideal Op-Amp Properties:**

- (1) The voltage between V<sub>+</sub> and V<sub>−</sub> is zero V<sub>+</sub> = V<sub>−</sub>
- (2) The current into both V<sub>+</sub> and V<sub>−</sub> termainals is zero

## For ideal Op-Amp circuit:

- (1) Write the kirchhoff node equation at the noninverting terminal V<sub>+</sub>
- (2) Write the kirchhoff node eqaution at the inverting terminal V\_
- (3) Set  $V_{\perp} = V_{\perp}$  and solve for the desired closed-loop gain

# Noninverting Amplifier

- (1) Kirchhoff node equation at  $V_{+}$  yields,  $V_{+} = V_{i}$
- (2) Kirchhoff node equation at  $V_{-}$  yields,  $\frac{V_{-}-0}{R_{a}} + \frac{V_{-}-V_{o}}{R_{f}} = 0$



(3) Setting  $V_{+} = V_{-}$  yields

$$\frac{V_i}{R_a} + \frac{V_i - V_o}{R_f} = 0 \quad \text{or} \quad \frac{V_o}{V_i} = 1 + \frac{R_f}{R_a}$$



#### Noninverting amplifier

$$v_o = (1 + \frac{R_f}{R_a})v_i$$



Voltage follower

$$v_o = v_i$$



Noninverting input with voltage divider

$$v_o = (1 + \frac{R_f}{R_a})(\frac{R_2}{R_1 + R_2})v_i$$



Less than unity gain

$$v_o = \frac{R_2}{R_1 + R_2} v_i$$

#### **INVERTING AMPLIFIER**

(1) Kirchhoff node equation at  $V_{+}$  yields,  $V_{+} = 0$ 



(3) Setting  $V_{+} = V_{-}$  yields  $V_{-} = \frac{V_{-}}{R}$ 

Notice: The closed-loop gain  $V_{\rm o}/V_{\rm in}$  is dependent upon the ratio of two resistors, and is independent of the open-loop gain. This is caused by the use of feedback output voltage to subtract from the input voltage.

#### **MULTIPLE INPUTS**

(1) Kirchhoff node equation at  $V_{+}$  yields, = 0



 $R_{\mathrm{f}}$ 

(3) Setting 
$$V = V$$
 yields
$$V_o = -R_f \left( \frac{\dot{V}_a}{R_a} + \frac{\dot{V}_b}{R_b} + \frac{V_c}{R_c} \right) = -R_f \sum_{j=a}^c \frac{V_j}{R_j}$$

#### **INVERTING INTEGRATOR**

Now replace resistors  $R_a$  and  $R_f$  by complex components  $Z_a$  and  $Z_f$ , respectively, therefore

Supposing

$$V_o = \frac{-Z_f}{Z_a} V_{in}$$

- posing  $V_o = \frac{-Z_f}{Z}V_{in}$ The feedback component is a capacitor  $C_{in}^{V}$ i.e.,
- $Z_f = \frac{1}{\text{Cinff}}$ The input cinff onent is a resistor R,  $Z_a = R$ Therefore, the closed-loop gain  $(V_o/V_{in})$  become:

$$v_o(t) = \frac{-1}{RC} \int v_i(t) dt$$
here
$$v_o(t) = V e^{j\omega t}$$

where  $v_i(t) = V_i e^{j\omega t}$ What happens if  $Z_a = 1/j\omega C$  whereas,  $Z_f = R$ ? Inverting differentiator





#### **OP-AMP INTEGRATOR**

#### Example:

- (a) Determine the rate of change of the output voltage.
- (b) Draw the output waveform.

#### Solution:

(a) Rate of change of the output voltage

$$\frac{\Delta V_o}{\Delta t} = -\frac{V_i}{RC} = \frac{5 \text{ V}}{(10 \text{ k}\Omega)(0.01 \,\mu\text{F})}$$
$$= -50 \,\text{mV/}\,\mu\text{s}$$

(b) In 100 μs, the voltage decrease

$$\Delta V_o = (-50 \,\text{mV}/\mu\text{s})(100 \,\mu\text{s}) = -5\text{V}$$





## **OP-AMP DIFFERENTIATOR**



$$v_o = -\left(\frac{dV_i}{dt}\right)RC$$

## **NON-IDEAL CASE** (INVERTING AMPLIFIER)





U Equivalent Circuit



3 categories are considering

- ☐ Close-Loop Voltage Gain
- ☐ Input impedance
- ☐ Output impedance

#### **CLOSE-LOOP GAIN**

Applied KCL at V– terminal,

$$\frac{V_{in} - V_{\pi}}{R_a} + \frac{-V_{\pi}}{R_{\pi}} + \frac{V_o - V_{\pi}}{R_f} = 0$$

By using the open loop gain,

$$V_o = -AV_{\pi}$$

$$\Rightarrow \frac{V_{in}}{R_a} + \frac{V_o}{AR_a} + \frac{V_o}{AR_{\pi}} + \frac{V_o}{R_f} + \frac{V_o}{AR_f} = 0$$

$$\Rightarrow \frac{V_{in}}{R_a} = -V_o \frac{R_{\pi}R_f + R_aR_f + R_aR_{\pi} + AR_aR_{\pi}}{AR_aR_{\pi}R_f}$$



The Close-Loop Gain,  $A_{\rm v}$ 

$$A_{v} = \frac{V_{o}}{V_{in}} = \frac{-AR_{\pi}R_{f}}{R_{\pi}R_{f} + R_{a}R_{f} + R_{a}R_{\pi} + AR_{a}R_{\pi}}$$

#### **CLOSE-LOOP GAIN**

When the open loop gain is very large, the above equation become,

$$A_{v} \sim \frac{-R_{f}}{R_{a}}$$

Note: The close-loop gain now reduce to the same form as an ideal case

#### INPUT IMPEDANCE

Input Impedance can be regarded as,

$$R_{in} = R_a + R_\pi // R'$$

where R' is the equivalent impedance of the red box circuit, that is

$$R' = \frac{V_{\pi}}{i_f}$$

However, with the below circuit,

$$V_{\pi} - (-AV_{\pi}) = i_f (R_f + R_o)$$

$$\Rightarrow R' = \frac{V_{\pi}}{i_f} = \frac{R_f + R_o}{1 + A}$$



#### INPUT IMPEDANCE

Finally, we find the input impedance as,

$$R_{in} = R_a + \left[ \frac{1}{R_{\pi}} + \frac{1+A}{R_f + R_o} \right]^{-1} \implies R_{in} = R_a + \frac{R_{\pi}(R_f + R_o)}{R_f + R_o + (1+A)R_{\pi}}$$

Since,  $R_f + R_o \ll (1+A)R_\pi$ ,  $R_{in}$  become,

$$R_{in} \sim R_a + \frac{(R_f + R_o)}{(1+A)}$$

Again with  $R_f + R_o \ll (1+A)$ 

$$R_{in} \sim R_{a}$$

Note: The op-amp can provide an impedance isolated from input to output

#### **OUTPUT IMPEDANCE**

Only source-free output impedance would be considered,

i.e.  $V_i$  is assumed to be 0

Firstly, with figure (a),

$$V_{\pi} = \frac{R_a // R_{\pi}}{R_f + R_a // R_{\pi}} V_o \Longrightarrow V_{\pi} = \frac{R_a R_{\pi}}{R_a R_f + R_a R_{\pi} + R_f R_{\pi}} V_o$$

By using KCL,  $i_0 = i_1 + i_2$ 

$$i_o = \frac{V_o}{R_f + R_a // R_f} + \frac{V_o - (-AV_{\pi})}{R_o}$$

By substitute the equation from Fig. (a),

The output impedance,  $R_{out}$  is

$$\frac{V_o}{i_o} = \frac{R_o(R_a R_f + R_a R_{\pi} + R_f R_{\pi})}{(1 + R_o)(R_a R_f + R_a R_{\pi} + R_f R_{\pi}) + (1 + A)R_a R_{\pi}}$$

 $\therefore R_{\pi}$  and A comparably large,

$$R_{out} \sim \frac{R_o(R_a + R_f)}{AR_a}$$

